Zero forcing in iterated line digraphs

نویسندگان

  • Daniela Ferrero
  • Thomas Kalinowski
  • Sudeep Stephen
چکیده

Zero forcing is a propagation process on a graph, or digraph, defined in linear algebra to provide a bound for the minimum rank problem. Independently, zero forcing was introduced in physics, computer science and network science, areas where line digraphs are frequently used as models. Zero forcing is also related to power domination, a propagation process that models the monitoring of electrical power networks. In this paper we study zero forcing in iterated line digraphs and provide a relationship between zero forcing and power domination in line digraphs. In particular, for regular iterated line digraphs we determine the minimum rank/maximum nullity, zero forcing number and power domination number, and provide constructions to attain them. We conclude that regular iterated line digraphs present optimal minimum rank/maximum nullity, zero forcing number and power domination number, and apply our results to determine those parameters on some families of digraphs often used in applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transmission Fault-tolerance of Iterated Line Digraphs Transmission Fault-tolerance of Iterated Line Digraphs Transmission Fault-tolerance of Iterated Line Digraphs

Many interconnection networks can be constructed with line digraph iterations. In this paper, we will establish a general result on super line-connectivity based on the line digraph iteration which improves and generalizes several existing results in the literature.

متن کامل

Ela Minimum Rank, Maximum Nullity, and Zero Forcing Number of Simple Digraphs

A simple digraph describes the off-diagonal zero-nonzero pattern of a family of (not necessarily symmetric) matrices. Minimum rank of a simple digraph is the minimum rank of this family of matrices; maximum nullity is defined analogously. The simple digraph zero forcing number is an upper bound for maximum nullity. Cut-vertex reduction formulas for minimum rank and zero forcing number for simpl...

متن کامل

Radii and centers in iterated line digraphs

We show that the out-radius and the radius grow linearly, or “almost” linearly, in iterated line digraphs. Further, iterated line digraphs with a prescribed out-center, or a center, are constructed. It is shown that not every line digraph is admissible as an out-center of line digraph.

متن کامل

Diameter vulnerability of iterated line digraphs in terms of the girth

Iterated line digraphs arise naturally in designing fault tolerant systems. Diameter vulnerability measures the increase in diameter of a digraph when some of its vertices or arcs fail. Thus, the study of diameter vulnerability is a suitable approach to the fault tolerance of a network. In this article we present some upper bounds for diameter vulnerability of iterated line digraphs LkG. Our bo...

متن کامل

New bounds on the diameter vulnerability of iterated line digraphs

Iterated line digraphs have some good properties in relation to the design of interconnection networks. The diameter vulnerability of a digraph is the maximum diameter of the subdigraphs obtained by deleting a ,xed number of vertices or arcs. This parameter is related to the fault-tolerance of interconnection networks. In this work, we introduce some new parameters in order to ,nd new bounds fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017